
When you type a command on the command line, you’re basically telling the shell to run an
executable file with the given name. In Linux, these executable programs, such as ls , find ,
file , and others, usually live inside several different directories on your system. All file with
executable permissions stored in these directories can be run from any location. The most common
directories that hold executable programs are /bin , /sbin , /usr/sbin , /usr/local/bin and
/usr/local/sbin .

But how does the shell knows, what directories to search for executable programs? Does the shell
search through the whole filesystem?

The answer is simple. When you type a command, the shell searches through all directories
specified in the user $PATH variable for an executable file of that name.

This article explains how to add directories to the $PATH variable in Linux systems.

The $PATH environmental variable is a colon-delimited list of directories that tells the shell which
directories to search for executable files.

To check what directories are in your $PATH , you can use either the printenv or echo command:

The output will look something like this:

If you have two executable files sharing the same name located in two different directories, the
shell will run the file that is in the directory that comes first in the $PATH .

How to Add a Directory to PATH
in Linux

What is $PATH in Linux ?

echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap

/bin

Adding a Directory to $PATH

There are situations where you may want to add other directories to the $PATH variable. For
example, some programs may be installed in different locations, or you may want to have a
dedicated directory for your personal scripts but be able to run them without specifying the
absolute path to the executable files. To do this, you simply need to add the directory to your
$PATH .

Let’s say you have a directory called bin located in your Home directory in which you keep your
shell scripts. To add the directory to your $PATH , type in:

The export command will export the modified variable to the shell child process environments.

You can now run your scripts by typing the executable script name without specifying the full path
to the file.

However, this change is only temporary and valid only in the current shell session.

To make the change permanent, you need to define the $PATH variable in the shell configuration
files. In most Linux distributions, when you start a new session, environment variables are read
from the following files:

Global shell-specific configuration files such as /etc/environment and /etc/profile . Use
this file if you want the new directory added to all system users $PATH .
Per-user shell-specific configuration files. For example, if you use Bash, you can set the
$PATH variable in the ~/.bashrc file. If you are using Zsh the file name is ~/.zshrc .

In this example, we’ll set the variable in the ~/.bashrc file. Open the file with your text editor and
add the following line at the end of it:

~/.bashrc

Save the file and load the new $PATH into the current shell session using the source command:

To confirm that the directory was successfully added, print the value of your $PATH by typing:

export PATH="$HOME/bin:$PATH"

nano ~/.bashrc

export PATH="$HOME/bin:$PATH"

source ~/.bashrc

echo $PATH

To remove a directory from the $PATH variable, you need to open the corresponding configuration
file and delete the directory in question from the $PATH variable. The change will be active in the
new shell sessions.

Another rare situation is if you want to remove a directory from the $PATH only for the current
session. You can do that by temporarily editing the variable. For example, if you want to remove
the /home/lina/bin directory from the $PATH variable, you would do the following:

In the command above, we’re passing the current $PATH variable to the sed command, which will
remove the specified string (directory path).

If you temporarily added a new directory to the $PATH , you can remove it by exiting the current
terminal and opening a new one. The temporary changes are valid only in the current shell session.

Adding new directories to your user or global $PATH variable is pretty simple. This allows you to
execute commands and scripts stored on nonstandard locations without needing to type the full
path to the executable.

The same instructions apply for any Linux distribution, including Ubuntu, CentOS, RHEL, Debian,
and Linux Mint.

Removing a Directory from $PATH

PATH=$(echo "$PATH" | sed -e 's/:\/home\/lina\/bin$//')

Conclusion

Revision #3
Created 29 January 2025 23:01:43 by Nicolas
Updated 13 February 2025 22:15:27 by Nicolas

