Proxmox GPU passthrough for
Jellyfin LXC with NVIDIA
Graphics card (GTX1050 ti)

In the terminal of the Proxmox host:

e Install gcc with apt install gcc

Install build-essential with apt install build-essential

Reboot the machine

Install the pve-headers with apt install pve-headers-$(uname -r)
Install the nvidia driver from the official page

https://www.nvidia.com/download/index.aspx :

> C @ (O} nvidia.com [SRE
@ Dashboard * YouTube [JAnimé [JFini Yuum [utile isces on compte | CityZen @ Tempest Malignant Sc.. @ Comment monitorer ...

@ANVIDIA. Product

Drivers i

Manual Driver Search

Xy -
55 ST I 0

Games | News Games | News

NVIDIA App Light Up Your Holidays
with GeForce RTX

GeForce GTX 1050 Ti Download the New NVIDIA App.

Ultimate gaming, creating, and Al

Linux 64-bit

Eh]nna

AGHASBA

Vg9

Select your GPU (GTX 1050 Ti in my case) and the operating system "Linux 64-Bit" and
press "Search"

https://www.nvidia.com/download/index.aspx
https://doc.vainsta.fr/uploads/images/gallery/2024-11/Kl1kmUslWTythN9d-screenshot-4.png

<« 2> C @ 08 nvidia.com

@ Dashboard * YouTube [Animé [J Fini Yuumei [JBesoin [JUtile (35~ [Dliscence ©Z Mon compte | CityZen) Tempest MalignantSc.. @ Comment monitorer

Drivers Aiorivers GeForce Dr N king D

Recommended/Certified New Feature Branch BETA All

Linux 64-bit

Linux x64 (AMD64 /EM64T) Display Driver

What is an NVIDIA Recommended Driver?

This driver meets the quality levels applied to Windows drivers that pass testing in Windows Hardware Quality Labs (WHQL), therefore providing the same attention to
driver reliability, robustness, and performance for non-Windows operating systems (e.g., Linux).

Driver Version: Release Date: File Size: Info:
550.135 Tue Nov 19, 2024 307.35 MB ({g

View More Versions

Press "Download"

= C @ Q8 nvidia.com,
@ Dashboard * YouTube [JAnimé [JFini Yuumei [JBesoin [Jutile (IS [Jliscence ©Z Mon compte |CityZen @) Tempest Malignant Sc.. @ Comment monitorer ..

({gn\llDIA_ Products Solutions Indu s For You

Shop

Connect with peers and experts at GTC to explore how Al is ing industries. Get Early-Bird Pricing

Drivers rivers GeForce Drivers Networking Drivers ~

Linux x64 (AMD64/EM64T) Display Driver 550.135 | Linux 64-bit

Drivers Home > GeForce C 50 Ti | Linux 64-bit > Linux x64 (AMD64/EM64T) Display Driver

i ion: By clicking the "Download” button, you are confirming that you have read and agree to be bound by the

Driver Version: 550.135

Release Date: Tue Nov 19, 2024 for use of the driver. The driver will begin downloading

o e -t - w b"t immediately after clicking on the "Download" button. NVIDIA recommends users update to the latest
(pieithy fepoaEnn - IRt Al driver version

Language: English (US)

File Size: 307.35 MB

Release Highlights Supported Products Additional Information

> In Linux kernel 6.11, drm_fbdev_generic was renamed to drm_fbdev_ttm.Use drm_fbdev_ttm when present to keep
Game Ready

supporting direct framebufferaccess needed for Wayland compositors to present content on newerkernels. m;\d Studie
rivers.

> In linux-next commit 446d0f4849b1, output_poll_changed is removedfrom struct drm_mode_config_funcs. Do not
implement the functionpointer member when not present to ensure the driver can compile withnewer kernels. The
driver now supports enumerating modes on hotplugevents through the DRM fbdev APL.

> Updated the kernel module build process to use CONFIG_CC_VERSION_TEXTfrom the Linux kernel's Kconfig to detect

tha rammnilar nead fa koildéha Larnal Thie mau haln calack tha rarract ramnilar an eustame wharatha barnal wae kit

Right click on "Agree & Download" to copy the link to the file

e Download the file in your Proxmox host with wget [link you copied] ,in my case wget
https://us.download.nvidia.com/XFree86/Linux-x86 64/550.76/NVIDIA-Linux-x86 64-550.76.run

https://doc.vainsta.fr/uploads/images/gallery/2024-11/kzL7DnyIx140u2V7-image.png
https://doc.vainsta.fr/uploads/images/gallery/2024-11/9aecvTGCnP44X7RH-image.png

Also copy the link into a text file, as we will need the exact same link later again. (For the
GPU passthrough to work, the drivers in Proxmox and inside the Ixc need to match, so it is
vital, that we download the same file on both)

After the download finished, run 1s , to see the downloades file, in my case it listed
NVIDIA-Linux-x86 64-550.76.run . Mark the filename and copy it

Now execute the file with sh [filename] (in my case sh NVIDIA-Linux-x86 64-550.76.run)
and go through the installer. There should be no issues. When asked about the x-
configuration file, | accepted. You can also ignore the error about the 32-bit part missing.
Reboot the machine

Run nvidia-smi , to verify the installation - if you get the box shown below, everything
worked so far:

| NVIDIA-3MI 550. Driver Version: 550.76 CUDA Verslion:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

s}
=
1]

|
=1
=%

GFU ame Persistence-M Disp.A | Volatile Uncorr.
Ferf Pwr:Usage/Cap Memory-Usage | GPU-Util Computs
[MIG
4 ———————————————
NVIDIA GeForce GTX 1050 Ti
N/B /

No running processe

nvidia-smi outputt, nvidia driver running on Proxmox host

Create a new Debian 12 Ixc for Jellyfin to run in, note the container ID (CT ID), as we will
need it later.
script for auto jellyfin install :

bash -c "$(wget -gqLO - https://github.com/community-
scripts/ProxmoxVE/raw/main/ct/jellyfin.sh)"

Start the Ixc and log into the console, now run apt update & apt full-upgrade -y to
update the system

assign a static IP address to the Ixc in your internet router. If you do not do that, all
connected devices may loose contact to the Jellyfin host, if the IP address changes at
some point.

Reboot the Ixc, to make sure all updates are applied and if you configured one, the new
static IP address is applied. (You can check the IP address with the command ip a)
Shutdown the Ixc

Now switch back to the Proxmox servers main console

Run 1s -1 /dev/nvidia* to view all the nvidia devices:

https://doc.vainsta.fr/uploads/images/gallery/2024-11/frzuvScer6pZItGy-proxmox-gpu-passthrough-for-jellyfin-lxc-with-nvidia-v0-vtsvjut86uvc1.webp

crw-rw-rw- 1 root root 195, 0 Apr 18 19:36 /dev/nvidia0
crw-rw-rw- 1 root root 195, 255 Apr 18 19:36 /dev/nvidiactl
crw-rw-rw- 1 root root 235, 0 Apr 18 19:36 /dev/nvidia-uvm
crw-rw-rw- 1 root root 235, 1 Apr 18 19:36 /dev/nvidia-uvm-tools

/dev/nvidia-caps:

total O

Cr-------- 1 root root 238, 1 Apr 18 19:36 nvidia-capl
cr--r--r-- 1 root root 238, 2 Apr 18 19:36 nvidia-cap2

e Copy the output of the previus command (1s -1 /dev/nv*) into a text file, as we will need
the information in further steps. Also take note, that all the nvidia devices are assigned to
root root . Now we know, that we need to route the root group and the corresponding
devices to the Ixc.

e Run cat /etc/group to look through all the groups and find root. In my case (as it should
be) root is right at the top:

root:x:0:

e Run nano /etc/subgid to add a new mapping to the file, to allow root to map those groups
to a new group ID in the following process, by adding a line to the file: root:x:1 , with X
being the number of the group we need to map (in my case 0). My file ended up looking
like this:

root:100000:65536
root:0:1

e Run cd /etc/pve/lxc to get into the folder for editing the container config file (and
optionally run 1s to view all the files)

e Run nano X.conf with X being the Ixc ID (in my case nano 500.conf) to edit the
corresponding containers configuration file. Before any of the further changes, my file
looked like this:

arch: amd64

cores: 4

features: nesting=1

hostname: Jellyfin

memory: 2048

mpO: /HDD 1/media,mp=/mnt/media

net0: name=eth0,bridge=vmbrl, firewall=1,hwaddr=BC:24:11:57:90:B4,ip=dhcp,ip6=auto, type=veth
ostype: debian

rootfs: NVME 1:subvol-500-disk-0,size=12G
swap: 2048

unprivileged: 1

e Now we will edit this file to pass the relevant devices through to the container
o Underneath the previously shown lines, add the following line for every device we
need to pass through. Use the text you copied previously for refference, as we will
need to use the corresponding numbers here for all the devices we need to pass

1xc.
1xc.

1xc

1xc.
1xc.
1xc.

through. | suggest working your way through from top to bottom. For example to
pass through my first device called "/dev/nvidia0" (at the end of each line, you can
see which device it is), | need to look at the first line of my copied text: crw-rw-rw- 1
root root 195, 0 Apr 18 19:36 /dev/nvidia0

Right now, for each device only the two numbers listed after "root" are relevant, in
my case 195 and 0. For each device, add a line to the containers config file,
following this pattern:

1xc.cgroup2.devices.allow: c¢ [first number]:[second number] rwm
So in my case, | get these lines:

cgroup2.devices.allow: c 195:0 rwm
cgroup2.devices.allow: c 195:255 rwm
.cgroup2.devices.allow: ¢ 235:0 rwm
cgroup2.devices.allow: ¢ 235:1 rwm
cgroup2.devices.allow: c 238:1 rwm
cgroup2.devices.allow: c 238:2 rwm

e Now underneath, we also need to add a line for every device, to be mounted, following
the pattern (note not to forget adding each device twice into the line)

1xc.mount.entry: [device] [device] none bind,optional,create=file

In my case this results in the following lines (if your device s are the same, just copy the
text for simplicity):

1xc.
1xc.
1xc.
1xc.
1xc.
1xc.

mount.
mount.
mount.

mount

mount.
mount.

entry:
entry:
entry:
.entry:
entry:
entry:

/dev/nvidia®@ dev/nvidia® none bind,optional,create=file

/dev/nvidiactl dev/nvidiactl none bind,optional,create=file

/dev/nvidia-uvm dev/nvidia-uvm none bind,optional,create=file
/dev/nvidia-uvm-tools dev/nvidia-uvm-tools none bind,optional,create=file
/dev/nvidia-caps/nvidia-capl dev/nvidia-caps/nvidia-capl none bind,optional,cre
/dev/nvidia-caps/nvidia-cap2 dev/nvidia-caps/nvidia-cap2 none bind,optional,cre

e underneath, add the following lines, to map the previously enabled group to the container:

1xc.idmap: u 0 100000 65536

e to map the group ID 0 (root group in the Proxmox host, the owner of the devices we
passed through) to be the same in both namespaces:

1xc.idmap: g 0 0 1

e to map all the following group IDs (1 to 65536) in the Proxmox Host to the containers
namespace (group IDs 100000 to 65535):

lxc.idmap: g 1 100000 65536

e In the end, the Ixc configuration file looked like this:

arch:

cores: 4

amd64

features: nesting=1
hostname: Jellyfin
memory: 2048

mpo :

/HDD 1/media,mp=/mnt/media

net0: name=eth0O,bridge=vmbrl, firewall=1, hwaddr=BC:24:11:57:90:B4, ip=dhcp,ip6=auto, typ>
ostype: debian

rootfs: NVME 1:subvol-500-disk-0,size=12G

swap: 2048

unprivileged: 1

1xc.
1xc.

1xc

1xc.
1xc.
lxc.
1xc.

1xc

1xc

cgroup2.devices.allow: c¢ 195:0 rwm
cgroup2.devices.allow: c 195:255 rwm
.cgroup2.devices.allow: ¢ 235:0 rwm
cgroup2.devices.allow: c 235:1 rwm
cgroup2.devices.allow: c 238:1 rwm

cgroup2.devices.allow: c 238:2 rwm
mount.entry: /dev/nvidia@ dev/nvidia® none bind,optional,create=file

.mount.entry: /dev/nvidiactl dev/nvidiactl none bind,optional,create=file
1xc.
1xc.
1xc.
lxc.
.idmap: u 0 100000 65536
1xc.
lxc.

mount.entry: /dev/nvidia-uvm dev/nvidia-uvm none bind,optional,create=file

mount.entry: /dev/nvidia-uvm-tools dev/nvidia-uvm-tools none bind,optional,create>
mount.entry: /dev/nvidia-caps/nvidia-capl dev/nvidia-caps/nvidia-capl none bind, o>
mount.entry: /dev/nvidia-caps/nvidia-cap2 dev/nvidia-caps/nvidia-cap2 none bind, o>

idmap: g 6 0 1
idmap: g 1 100000 65536

o Now start the Ixc. If the Ixc does not start correctly, check the Ixc configuration file again,
because you may have made a misake while adding the new lines.

e Go into the Ixc console and download the same nvidia driver file, as done previously in the
Proxmox host (wget [link you copied]), using the link you copied before

o Run 1s , to see the file you downloaded and copy the file name
o Execute the file, but now add the --no-kernel-module flag. Because the host shares

its kernel with the container, the files are already installed. Leaving this flag out, will
cause an error:

sh [filename] --no-kernel-module

in my case sh NVIDIA-Linux-x86 64-550.76.run --no-kernel-module

Run the installer the same way, as before. You can again ignore the X-driver error
and the 32 bit error. Take note of the vulkan loader error. | don't know if the package
is actually necessary, so | installed it, just to be safe. For the current debian 12

distro, libvulkanl is the right one:
apt install libvulkanl

e Reboot the whole Proxmox server
e Run nvidia-smi inside the Ixc console. You should now get the familiar box again. If there
is an error message, something went wrong (see possible mistakes below)

NVIDIZA-SMTI 550.7& Driver Version: CUDA Version: 12.4

i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

+

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Persistence—-M

o
=
[d1]
|
=
=}

Disp.A Volatile Uncorr.
Fwr:Usage/Cap Memory-Usage GPU-Util Compute
MIG

NVIDIZ GeForce GTX 1050 Ti

Frocesses:
GFU GI

Usage

nvidia-smi output Ixc , driver running with access to GPU

e Go into the Jellyfin Dashboard and into the settings. Under Playback, select Nvidia NVENC
vor video transcoding and select the appropriate transcoding methods (see the matrix

under "Decoding" on https://developer.nvidia.com/video-encode-and-decode-gpu-support-

matrix-new for refference)

In my case, | used the following options, although | have not tested the system completely
for stability:

https://doc.vainsta.fr/uploads/images/gallery/2024-11/11ThFB343RTA8Cg7-proxmox-gpu-passthrough-for-jellyfin-lxc-with-nvidia-v0-lmgyp86o8uvc1.webp
https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new
https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new

Transcoding Help

Hardware acceleration:

Nvidia NVENC

Enable hardware decoding for:

~ | H264
" HEVC

" MPEG2

| HEVC 10bit

¥ VP9 10bit

& Enable enhanced NVDEC decoder

Hardware encoding options:

" Enable hardware encoding

. S Allow encoding in HEVC format

Jellyfin Transcoding settings

e Save these settings with the "Save" button at the bottom of the page
e Start a Movie on the Jellyfin web-GUI and select a non native quality (just try a few)

e While the movie is running in the background, open the Proxmox host shell and run
nvidia-smi

If everything works, you should see the process running at the bottom (it will only be
visible in the Proxmox host and not the jellyfin container):

https://doc.vainsta.fr/uploads/images/gallery/2024-11/iLBtNUZtizbWrX49-proxmox-gpu-passthrough-for-jellyfin-lxc-with-nvidia-v0-73j9lr1w8uvc1.webp

NVIDIZ-SMI 550.76 Driver Version: 550.76

Persistence-M Disp.ZA | Volatile Uncorr.
Pwr:Usage/Cap Memory-Usage GPU-Util Compute

NVIDIZ GeForce GTX 1050 Ti 00000000:02:00.0 Off
99MiB / 4096M1B

Transdcoding process running

e OPTIONAL: a way to disable the cap for the maximum encoding streams (

https://forum.proxmox.com/threads/jellyfin-Ixc-with-nvidia-gpu-transcoding-and-network-

storage.138873/ see " The final step: Unlimited encoding streams").

o First in the Proxmox host shell:
o Run cd /opt/nvidia
o Run wget https://raw.githubusercontent.com/keylase/nvidia-
patch/master/patch.sh
o Run bash ./patch.sh
o Then, in the Jellyfin container console:
o Run mkdir /opt/nvidia
o Run cd /opt/nvidia
o Run wget https://raw.githubusercontent.com/keylase/nvidia-
patch/master/patch.sh
o Run bash ./patch.sh
o Afterwards | rebooted the whole server

Revision #8
Created 17 May 2024 12:08:22 by Nicolas
Updated 31 January 2025 00:16:58 by Nicolas

https://doc.vainsta.fr/uploads/images/gallery/2024-11/xA8ordNHR4NnMwp7-proxmox-gpu-passthrough-for-jellyfin-lxc-with-nvidia-v0-vukcs3209uvc1.webp
https://forum.proxmox.com/threads/jellyfin-lxc-with-nvidia-gpu-transcoding-and-network-storage.138873/
https://forum.proxmox.com/threads/jellyfin-lxc-with-nvidia-gpu-transcoding-and-network-storage.138873/

