
In the terminal of the Proxmox host:

Install gcc with apt install gcc
Install build-essential with apt install build-essential
Reboot the machine
Install the pve-headers with apt install pve-headers-$(uname -r)
Install the nvidia driver from the official page
https://www.nvidia.com/download/index.aspx :

Select your GPU (GTX 1050 Ti in my case) and the operating system "Linux 64-Bit" and
press "Search"

Proxmox GPU passthrough
for Jellyfin LXC with NVIDIA
Graphics card (GTX1050 ti)

https://www.nvidia.com/download/index.aspx
https://doc.vainsta.fr/uploads/images/gallery/2024-11/Kl1kmUslWTythN9d-screenshot-4.png

Press "Download"

Right click on "Agree & Download" to copy the link to the file

Download the file in your Proxmox host with wget [link you copied] ,in my case wget
https://us.download.nvidia.com/XFree86/Linux-x86_64/550.76/NVIDIA-Linux-x86_64-550.76.run

https://doc.vainsta.fr/uploads/images/gallery/2024-11/kzL7DnyIx140u2V7-image.png
https://doc.vainsta.fr/uploads/images/gallery/2024-11/9aecvTGCnP44X7RH-image.png

Also copy the link into a text file, as we will need the exact same link later again. (For the
GPU passthrough to work, the drivers in Proxmox and inside the lxc need to match, so it is
vital, that we download the same file on both)
After the download finished, run ls , to see the downloades file, in my case it listed
NVIDIA-Linux-x86_64-550.76.run . Mark the filename and copy it
Now execute the file with sh [filename] (in my case sh NVIDIA-Linux-x86_64-550.76.run) and go
through the installer. There should be no issues. When asked about the x-configuration
file, I accepted. You can also ignore the error about the 32-bit part missing.
Reboot the machine
Run nvidia-smi , to verify the installation - if you get the box shown below, everything
worked so far:

nvidia-smi outputt, nvidia driver running on Proxmox host

Create a new Debian 12 lxc for Jellyfin to run in, note the container ID (CT ID), as we will
need it later.
script for auto jellyfin install :

bash -c "$(wget -qLO - https://github.com/community-scripts/ProxmoxVE/raw/main/ct/jellyfin.sh)"

Start the lxc and log into the console, now run apt update && apt full-upgrade -y to update the
system
assign a static IP address to the lxc in your internet router. If you do not do that, all
connected devices may loose contact to the Jellyfin host, if the IP address changes at
some point.
Reboot the lxc, to make sure all updates are applied and if you configured one, the new
static IP address is applied. (You can check the IP address with the command ip a)
Shutdown the lxc
Now switch back to the Proxmox servers main console
Run ls -l /dev/nvidia* to view all the nvidia devices:

https://doc.vainsta.fr/uploads/images/gallery/2024-11/frzuvScer6pZItGy-proxmox-gpu-passthrough-for-jellyfin-lxc-with-nvidia-v0-vtsvjut86uvc1.webp

Copy the output of the previus command (ls -l /dev/nv*) into a text file, as we will need the
information in further steps. Also take note, that all the nvidia devices are assigned to
root root . Now we know, that we need to route the root group and the corresponding
devices to the lxc.
Run cat /etc/group to look through all the groups and find root. In my case (as it should be)
root is right at the top:

Run nano /etc/subgid to add a new mapping to the file, to allow root to map those groups to
a new group ID in the following process, by adding a line to the file: root:X:1 , with X being
the number of the group we need to map (in my case 0). My file ended up looking like
this:

Run cd /etc/pve/lxc to get into the folder for editing the container config file (and optionally
run ls to view all the files)
Run nano X.conf with X being the lxc ID (in my case nano 500.conf) to edit the
corresponding containers configuration file. Before any of the further changes, my file
looked like this:

Now we will edit this file to pass the relevant devices through to the container
Underneath the previously shown lines, add the following line for every device we
need to pass through. Use the text you copied previously for refference, as we will
need to use the corresponding numbers here for all the devices we need to pass

crw-rw-rw- 1 root root 195, 0 Apr 18 19:36 /dev/nvidia0
crw-rw-rw- 1 root root 195, 255 Apr 18 19:36 /dev/nvidiactl
crw-rw-rw- 1 root root 235, 0 Apr 18 19:36 /dev/nvidia-uvm
crw-rw-rw- 1 root root 235, 1 Apr 18 19:36 /dev/nvidia-uvm-tools

/dev/nvidia-caps:
total 0
cr-------- 1 root root 238, 1 Apr 18 19:36 nvidia-cap1
cr--r--r-- 1 root root 238, 2 Apr 18 19:36 nvidia-cap2

root:x:0:

root:100000:65536
root:0:1

arch: amd64
cores: 4
features: nesting=1
hostname: Jellyfin
memory: 2048
mp0: /HDD_1/media,mp=/mnt/media
net0: name=eth0,bridge=vmbr1,firewall=1,hwaddr=BC:24:11:57:90:B4,ip=dhcp,ip6=auto,type=veth
ostype: debian
rootfs: NVME_1:subvol-500-disk-0,size=12G
swap: 2048
unprivileged: 1

through. I suggest working your way through from top to bottom. For example to
pass through my first device called "/dev/nvidia0" (at the end of each line, you can
see which device it is), I need to look at the first line of my copied text: crw-rw-rw- 1
root root 195, 0 Apr 18 19:36 /dev/nvidia0
Right now, for each device only the two numbers listed after "root" are relevant, in
my case 195 and 0. For each device, add a line to the containers config file,
following this pattern:
lxc.cgroup2.devices.allow: c [first number]:[second number] rwm
So in my case, I get these lines:

Now underneath, we also need to add a line for every device, to be mounted, following
the pattern (note not to forget adding each device twice into the line)
lxc.mount.entry: [device] [device] none bind,optional,create=file
In my case this results in the following lines (if your device s are the same, just copy the
text for simplicity):

underneath, add the following lines, to map the previously enabled group to the container:

to map the group ID 0 (root group in the Proxmox host, the owner of the devices we
passed through) to be the same in both namespaces:

to map all the following group IDs (1 to 65536) in the Proxmox Host to the containers
namespace (group IDs 100000 to 65535):

In the end, the lxc configuration file looked like this:

lxc.cgroup2.devices.allow: c 195:0 rwm
lxc.cgroup2.devices.allow: c 195:255 rwm
lxc.cgroup2.devices.allow: c 235:0 rwm
lxc.cgroup2.devices.allow: c 235:1 rwm
lxc.cgroup2.devices.allow: c 238:1 rwm
lxc.cgroup2.devices.allow: c 238:2 rwm

lxc.mount.entry: /dev/nvidia0 dev/nvidia0 none bind,optional,create=file
lxc.mount.entry: /dev/nvidiactl dev/nvidiactl none bind,optional,create=file
lxc.mount.entry: /dev/nvidia-uvm dev/nvidia-uvm none bind,optional,create=file
lxc.mount.entry: /dev/nvidia-uvm-tools dev/nvidia-uvm-tools none bind,optional,create=file
lxc.mount.entry: /dev/nvidia-caps/nvidia-cap1 dev/nvidia-caps/nvidia-cap1 none bind,optional,create=file
lxc.mount.entry: /dev/nvidia-caps/nvidia-cap2 dev/nvidia-caps/nvidia-cap2 none bind,optional,create=file

lxc.idmap: u 0 100000 65536

lxc.idmap: g 0 0 1

lxc.idmap: g 1 100000 65536

arch: amd64
cores: 4

Now start the lxc. If the lxc does not start correctly, check the lxc configuration file again,
because you may have made a misake while adding the new lines.
Go into the lxc console and download the same nvidia driver file, as done previously in the
Proxmox host (wget [link you copied]), using the link you copied before

Run ls , to see the file you downloaded and copy the file name
Execute the file, but now add the --no-kernel-module flag. Because the host shares
its kernel with the container, the files are already installed. Leaving this flag out, will
cause an error:
sh [filename] --no-kernel-module
in my case sh NVIDIA-Linux-x86_64-550.76.run --no-kernel-module
Run the installer the same way, as before. You can again ignore the X-driver error
and the 32 bit error. Take note of the vulkan loader error. I don't know if the package
is actually necessary, so I installed it, just to be safe. For the current debian 12
distro, libvulkan1 is the right one:
apt install libvulkan1

Reboot the whole Proxmox server
Run nvidia-smi inside the lxc console. You should now get the familiar box again. If there is
an error message, something went wrong (see possible mistakes below)

features: nesting=1
hostname: Jellyfin
memory: 2048
mp0: /HDD_1/media,mp=/mnt/media
net0: name=eth0,bridge=vmbr1,firewall=1,hwaddr=BC:24:11:57:90:B4,ip=dhcp,ip6=auto,typ>
ostype: debian
rootfs: NVME_1:subvol-500-disk-0,size=12G
swap: 2048
unprivileged: 1
lxc.cgroup2.devices.allow: c 195:0 rwm
lxc.cgroup2.devices.allow: c 195:255 rwm
lxc.cgroup2.devices.allow: c 235:0 rwm
lxc.cgroup2.devices.allow: c 235:1 rwm
lxc.cgroup2.devices.allow: c 238:1 rwm
lxc.cgroup2.devices.allow: c 238:2 rwm
lxc.mount.entry: /dev/nvidia0 dev/nvidia0 none bind,optional,create=file
lxc.mount.entry: /dev/nvidiactl dev/nvidiactl none bind,optional,create=file
lxc.mount.entry: /dev/nvidia-uvm dev/nvidia-uvm none bind,optional,create=file
lxc.mount.entry: /dev/nvidia-uvm-tools dev/nvidia-uvm-tools none bind,optional,create>
lxc.mount.entry: /dev/nvidia-caps/nvidia-cap1 dev/nvidia-caps/nvidia-cap1 none bind,o>
lxc.mount.entry: /dev/nvidia-caps/nvidia-cap2 dev/nvidia-caps/nvidia-cap2 none bind,o>
lxc.idmap: u 0 100000 65536
lxc.idmap: g 0 0 1
lxc.idmap: g 1 100000 65536

nvidia-smi output lxc , driver running with access to GPU

Go into the Jellyfin Dashboard and into the settings. Under Playback, select Nvidia NVENC
vor video transcoding and select the appropriate transcoding methods (see the matrix
under "Decoding" on https://developer.nvidia.com/video-encode-and-decode-gpu-support-
matrix-new for refference)
In my case, I used the following options, although I have not tested the system completely
for stability:

https://doc.vainsta.fr/uploads/images/gallery/2024-11/11ThFB343RTA8Cg7-proxmox-gpu-passthrough-for-jellyfin-lxc-with-nvidia-v0-lmgyp86o8uvc1.webp
https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new
https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new

Jellyfin Transcoding settings

Save these settings with the "Save" button at the bottom of the page
Start a Movie on the Jellyfin web-GUI and select a non native quality (just try a few)
While the movie is running in the background, open the Proxmox host shell and run
nvidia-smi
If everything works, you should see the process running at the bottom (it will only be
visible in the Proxmox host and not the jellyfin container):

https://doc.vainsta.fr/uploads/images/gallery/2024-11/iLBtNUZtizbWrX49-proxmox-gpu-passthrough-for-jellyfin-lxc-with-nvidia-v0-73j9lr1w8uvc1.webp

Transdcoding process running

OPTIONAL: a way to disable the cap for the maximum encoding streams (
https://forum.proxmox.com/threads/jellyfin-lxc-with-nvidia-gpu-transcoding-and-network-
storage.138873/ see " The final step: Unlimited encoding streams").

First in the Proxmox host shell:
Run cd /opt/nvidia
Run wget https://raw.githubusercontent.com/keylase/nvidia-patch/master/patch.sh
Run bash ./patch.sh

Then, in the Jellyfin container console:
Run mkdir /opt/nvidia
Run cd /opt/nvidia
Run wget https://raw.githubusercontent.com/keylase/nvidia-patch/master/patch.sh
Run bash ./patch.sh

Afterwards I rebooted the whole server

Revision #8
Created 17 May 2024 11:08:22 by Nicolas
Updated 30 January 2025 23:16:58 by Nicolas

https://doc.vainsta.fr/uploads/images/gallery/2024-11/xA8ordNHR4NnMwp7-proxmox-gpu-passthrough-for-jellyfin-lxc-with-nvidia-v0-vukcs3209uvc1.webp
https://forum.proxmox.com/threads/jellyfin-lxc-with-nvidia-gpu-transcoding-and-network-storage.138873/
https://forum.proxmox.com/threads/jellyfin-lxc-with-nvidia-gpu-transcoding-and-network-storage.138873/

